Practical Selection of SVM Supervised Parameters with Different Feature Representations for Vowel Recognition

نویسندگان

  • Rimah Amami
  • Dorra Ben Ayed Mezghanni
  • Noureddine Ellouze
چکیده

It is known that the classification performance of Support Vector Machine (SVM) can be conveniently affected by the different parameters of the kernel tricks and the regularization parameter, C. Thus, in this article, we propose a study in order to find the suitable kernel with which SVM may achieve good generalization performance as well as the parameters to use. We need to analyze the behavior of the SVM classifier when these parameters take very small or very large values. The study is conducted for a multi-class vowel recognition using the TIMIT corpus. Furthermore, for the experiments, we used different feature representations such as MFCC and PLP. Finally, a comparative study was done to point out the impact of the choice of the parameters, kernel trick and feature representations on the performance of the SVM classifier

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Machine learning based Visual Evoked Potential (VEP) Signals Recognition

Introduction: Visual evoked potentials contain certain diagnostic information which have proved to be of importance in the visual systems functional integrity. Due to substantial decrease of amplitude in extra macular stimulation in commonly used pattern VEPs, differentiating normal and abnormal signals can prove to be quite an obstacle. Due to developments of use of machine l...

متن کامل

Mental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals

Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...

متن کامل

Fisher Discriminant Analysis (FDA), a supervised feature reduction method in seismic object detection

Automatic processes on seismic data using pattern recognition is one of the interesting fields in geophysical data interpretation. One part is the seismic object detection using different supervised classification methods that finally has an output as a probability cube. Object detection process starts with generating a pickset of two classes labeled as object and non-object and then selecting ...

متن کامل

Supervised Feature Extraction of Face Images for Improvement of Recognition Accuracy

Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...

متن کامل

An Empirical Comparison of SVM and Some Supervised Learning Algorithms for Vowel recognition

In this article, we conduct a study on the performance of some supervised learning algorithms for vowel recognition. This study aims to compare the accuracy of each algorithm. Thus, we present an empirical comparison between five supervised learning classifiers and two combined classifiers: SVM, KNN, Naive Bayes, Quadratic Bayes Normal (QDC) and Nearst Mean. Those algorithms were tested for vow...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1507.06020  شماره 

صفحات  -

تاریخ انتشار 2013